If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2)-44x-84=0
a = 1; b = -44; c = -84;
Δ = b2-4ac
Δ = -442-4·1·(-84)
Δ = 2272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2272}=\sqrt{16*142}=\sqrt{16}*\sqrt{142}=4\sqrt{142}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-4\sqrt{142}}{2*1}=\frac{44-4\sqrt{142}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+4\sqrt{142}}{2*1}=\frac{44+4\sqrt{142}}{2} $
| 2(x-3)+4(2x-9)=0 | | 65/s=13 | | 17-4y=4y-23 | | 15x-60=20x+5 | | x²/3-(x-2)/6=3/4 | | 10^x=-100 | | 0.7x+x=100 | | 12n+8-n=17+4n+40 | | 0.21(136+18x)=18x | | 5/4*x-7/8*x=21900 | | 6x4+x2=2 | | 3x²+4x+1=0 | | 8y-5/7y+1=-4/5 | | (-x+1)^2-2(-x^2+x-2)=21 | | 3x-(8+12x)-(7+4x)=6x-(3-8x)+13 | | M=-12m-6 | | 15x^+24x=0 | | 16+7a=4a+22 | | 4+8y=6+3y | | 2x12-6+4x12=7x12+6 | | 2(a-3)+4a=7a+6 | | 7^x=49^(x+5) | | x^2-8x-7.5=0 | | 5(1+4x)=7+12x | | 15x-6=-12x-54 | | 7x+6=15-13x | | 16x-2=24x-13 | | x+(x+17)=170 | | 1+80x=8x+46 | | 6x+25=31+2x | | 4b=44.16 | | 7(2y-5)-8=41 |